skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Angela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Purpose of Review

    Aquatic foods are increasingly being recognized as a diverse, bioavailable source of nutrients, highlighting the importance of fisheries and aquaculture for human nutrition. However, studies focusing on the nutrient supply of aquatic foods often differ in the nutrients they examine, potentially biasing their contribution to nutrition security and leading to ineffective policies or management decisions.

    Recent Findings

    We create a decision framework to effectively select nutrients in aquatic food research based on three key domains: human physiological importance, nutritional needs of the target population (demand), and nutrient availability in aquatic foods compared to other accessible dietary sources (supply). We highlight 41 nutrients that are physiologically important, exemplify the importance of aquatic foods relative to other food groups in the food system in terms of concentration per 100 g and apparent consumption, and provide future research pathways that we consider of high importance for aquatic food nutrition.

    Summary

    Overall, our study provides a framework to select focal nutrients in aquatic food research and ensures a methodical approach to quantifying the importance of aquatic foods for nutrition security and public health.

     
    more » « less
  2. Abstract This paper presents a deep-learning-based workflow to detect synapses and predict their neurotransmitter type in the primitive chordate Ciona intestinalis ( Ciona ) electron microscopic (EM) images. Identifying synapses from EM images to build a full map of connections between neurons is a labor-intensive process and requires significant domain expertise. Automation of synapse classification would hasten the generation and analysis of connectomes. Furthermore, inferences concerning neuron type and function from synapse features are in many cases difficult to make. Finding the connection between synapse structure and function is an important step in fully understanding a connectome. Class Activation Maps derived from the convolutional neural network provide insights on important features of synapses based on cell type and function. The main contribution of this work is in the differentiation of synapses by neurotransmitter type through the structural information in their EM images. This enables the prediction of neurotransmitter types for neurons in Ciona , which were previously unknown. The prediction model with code is available on GitHub. 
    more » « less
  3. Objective and Impact Statement . We propose an automated method of predicting Normal Pressure Hydrocephalus (NPH) from CT scans. A deep convolutional network segments regions of interest from the scans. These regions are then combined with MRI information to predict NPH. To our knowledge, this is the first method which automatically predicts NPH from CT scans and incorporates diffusion tractography information for prediction. Introduction . Due to their low cost and high versatility, CT scans are often used in NPH diagnosis. No well-defined and effective protocol currently exists for analysis of CT scans for NPH. Evans’ index, an approximation of the ventricle to brain volume using one 2D image slice, has been proposed but is not robust. The proposed approach is an effective way to quantify regions of interest and offers a computational method for predicting NPH. Methods . We propose a novel method to predict NPH by combining regions of interest segmented from CT scans with connectome data to compute features which capture the impact of enlarged ventricles by excluding fiber tracts passing through these regions. The segmentation and network features are used to train a model for NPH prediction. Results . Our method outperforms the current state-of-the-art by 9 precision points and 29 recall points. Our segmentation model outperforms the current state-of-the-art in segmenting the ventricle, gray-white matter, and subarachnoid space in CT scans. Conclusion . Our experimental results demonstrate that fast and accurate volumetric segmentation of CT brain scans can help improve the NPH diagnosis process, and network properties can increase NPH prediction accuracy. 
    more » « less
  4. EU competition appeals typically involve applications by private businesses to annul decisions made by the European Commission. Moreover, these appeals are first assigned at random to a chamber, with a judge then designated as the rapporteur who will be most closely involved with the case. Using hand-collected original data on the background characteristics of EU judges and on competition judgments by the General Court between 1989 and 2015, we test the extent to which the legal origins of judges bear a statistically significant effect on case outcomes and that the rapporteur plays a crucial role in the decision-making process. In particular, if a rapporteur comes from a country whose administrative law has a strong French influence, the decision is more likely to favor the Commission than if he is from any other EU country. These results are robust to alternative political ideology variables, including left–right politics and a preference for European integration. 
    more » « less